
1

Alexander Russel

Ms. Coleman

Operating Systems

21 April 2016

Git for Windows Erroneously Creates Alternate Data Streams

Git behaves strangely when we are talking about files which names contain a colon.

Except the original prefix of the disk (for example, C: \), Windows does not allow other

colons in the file name or path. In Unix, there is no such restriction. The test repository has been

created to check it, containing one file “foo:bar”, containing “hello”. Cloning the repository with

the standard version of Git for Windows does not give any errors or warnings:

C:\src

> git clone https://github.com/latkin/filetest.git

Cloning into 'filetest'...

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 3

Unpacking objects: 100% (3/3), done.

Checking connectivity... done.

But, instead of a file named foo:bar, you get an empty file foo:

C:\src

> cd .\filetest\

C:\src\filetest

> dir -force

 Directory: C:\src\filetest

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--h-- 7/17/2016 5:53 PM .git

-a---- 7/17/2016 5:47 PM 0 foo

This is strange, but even more interesting is that Git has a

different look at this:

C:\src\filetest

> git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 foo

nothing added to commit but untracked files present (use "git add" to

track)

Git notices the the untracked file foo but believes that the foo:bar is also present and

contains the original string. Things get even stranger when you activate the core.fscache option

(which is enabled by default in versions from 2.8.2 and higher). Then foo:bar is recorded as

missing:

C:\src\filetest

> git config core.fscache true

C:\src\filetest

> git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working

directory)

 deleted: foo:bar

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 foo

no changes added to commit (use "git add" and/or "git commit -a")

Why does it happen like this? The main reason for this is quite a non-obvious feature of

the NTFS, called "alternative data streams."

Briefly, the files in NTFS are not just data but the sets of one or more data streams. What

we believe to be the content of the file, in fact, is the content of he main, unnamed stream. Also,

the data can be stored in the other, named streams. These flows can be directly accessed adding

:streamname to the usual file path.

So, although the foo:bar is not a valid file name on Windows, the Windows file API is

glad to take it for read/write operations, as it is quite a normal “way” to put something in the file

system, in this case – an alternative flow bar of the foo file.

So, all this is quite silly. Git has to find the wrong file name, give an error and not

try to write a file to disk. The valid data is processed in Unix like this (for example, a file named \

Windows \ System32 \ crypt32.dll will be blocked). These files will be processed correctly

irrespective of the core.fscache option.

https://assignment.essayshark.com/samples.html

	Git for Windows paper 6
	assignment.essayshark.sq

